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PEI PTP End Instance 

PRI PTP Relay Instance 

EPON Ethernet Passive Optical Network 

WLAN Wireless Local Area Network 

PEI PTP End Instance 

PLL Phase-Locked Loop 

BMCA Best Master Clock Algorithm 

CMLDS Common Mean Link Delay Service 

TLV Time-Length-Value 



 

Offenburg University of Applied Sciences 

Institute of reliable Embedded Systems and Communication Electronics (ivESK) 
 Page 3 of 28 

 

PPS Pulse Per Second 

YANG Yet Another Next Generation 

GPS Global Positioning System 

  



 

Offenburg University of Applied Sciences 

Institute of reliable Embedded Systems and Communication Electronics (ivESK) 
 Page 4 of 28 

 

Table of Contents 

 

AUTHORS ............................................................................................................................................................... 1 

HISTORY ................................................................................................................................................................. 1 

ABBREVIATIONS ................................................................................................................................................... 2 

TABLE OF CONTENTS ............................................................................................................................................ 4 

LIST OF FIGURES ................................................................................................................................................... 6 

EXECUTIVE SUMMARY .......................................................................................................................................... 7 

1 INTRODUCTION............................................................................................................................................. 8 

2 CLOCK SYNCHRONIZATION AND SYNTONIZATION ................................................................................. 10 

2.1 SYNCHRONIZATION MODEL AND DEVICES .......................................................................................................... 10 

2.2 CLOCK SYNTONIZATION ................................................................................................................................... 11 

3 ESTABLISHMENT OF SYNCHRONIZATION TREE ...................................................................................... 12 

3.1 OVERVIEW ...................................................................................................................................................... 12 

3.2 BEST MASTER CLOCK ALGORITHM .................................................................................................................... 13 

4 SYNCHRONIZATION PROCESS ................................................................................................................... 16 

4.1 OVERVIEW ...................................................................................................................................................... 16 

4.2 TYPES OF SYNCHRONIZATION MESSAGES ........................................................................................................... 16 

4.3 PROPAGATION DELAY MEASUREMENT .............................................................................................................. 17 

4.4 TRANSPORT OF SYNCHRONIZATION INFORMATION ............................................................................................. 18 

4.5 SIGNALING MESSAGES ...................................................................................................................................... 21 

5 NEW CONCEPTS INTRODUCED IN 2020 .................................................................................................... 22 

5.1 EXTERNAL PORT CONFIGURATION .................................................................................................................... 22 

5.2 SIGNALING GPTP CAPABILITY .......................................................................................................................... 22 

5.3 MULTI-DOMAIN SUPPORT ................................................................................................................................ 22 

5.4 COMMON MEAN LINK DELAY SERVICE (CMLDS) ............................................................................................... 24 

5.5 ASCAPABLEACROSSDOMAINS ........................................................................................................................... 24 

5.6 GPTP DOMAIN IDENTIFICATION ....................................................................................................................... 25 

5.7 ANNOUNCE SLOW DOWN ................................................................................................................................. 25 



 

Offenburg University of Applied Sciences 

Institute of reliable Embedded Systems and Communication Electronics (ivESK) 
 Page 5 of 28 

 

5.8 SYNC SLOW DOWN .......................................................................................................................................... 25 

5.9 SYNCLOCKED FEATURE .................................................................................................................................... 26 

5.10 ONE-STEP PROCESSING .................................................................................................................................... 26 

6 CONCLUSION ................................................................................................................................................ 27 

REFERENCES ........................................................................................................................................................ 28 

 

  



 

Offenburg University of Applied Sciences 

Institute of reliable Embedded Systems and Communication Electronics (ivESK) 
 Page 6 of 28 

 

List of Figures  

FIG. 1: EXAMPLE OF A TIME-AWARE SCHEDULE [2] ................................................................................................................ 8 

FIG. 2: EXAMPLE OF A GPTP SYNCHRONIZATION NETWORK MODEL [4] .................................................................................. 10 

FIG. 3: GPTP SYNCHRONIZATION TREE [4] .......................................................................................................................... 12 

FIG. 4: WORKING PRINCIPLE OF BMCA (SIMPLIFIED)........................................................................................................... 14 

FIG. 5: PEER-TO-PEER DELAY MECHANISM [4] ..................................................................................................................... 17 

FIG. 6: TRANSPORT OF SYNCHRONIZATION INFORMATION ..................................................................................................... 19 

FIG. 7: MULTI-DOMAIN GPTP SYNCHRONIZATION TREE [4] .................................................................................................. 23 

FIG. 8: MULTI-DOMAIN GPTP SYNCHRONIZATION TREE WITH TWO GMS [4] .......................................................................... 23 



 

Offenburg University of Applied Sciences 

Institute of reliable Embedded Systems and Communication Electronics (ivESK) 
 Page 7 of 28 

 

 Executive Summary 

This report provides a sufficient explanation of time synchronization protocol based on the IEEE Std 

802.1AS standard with special focus on the main differences between the two versions of the 

standard released in 2011 and 2020. Chapter 1 introduces the need for time synchronization, while 

chapter 2 briefly explains the concepts of clock synchronization and syntonization. The 

establishment of synchronization hierarchy is described in chapter 3, followed by the technical 

details of the synchronization process in chapter 4. Chapter 5 focuses on the new aspects defined in 

2020 and makes useful comparisons with the previous version of the year 2011. In the end, the 

discussion is concluded in chapter 6. 
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1 Introduction 

Since the development of modern industry, human intervention in factory processes has been 

gradually decreasing while sophisticated control systems took over the mission of administrating 

and supervising different machineries in the industrial domain. In order to function efficiently, 

industrial networks pose very strict requirements on their communication systems in terms of 

determinism and reliability of delivery which can only be achieved using real-time communications. 

Aiming to deal with this issue, some proprietary communication protocols were invented. Although 

many of these protocols are commonly used nowadays (like Profinet, EtherCAT, SERCOS III, etc.), 

they are often not compatible with each other so they cannot coexist on the same physical network, 

not to mention the lack of compatibility with IEEE standards. This need led to the development of 

Time Sensitive Network (TSN) which can be described is simple words as an Ethernet-based 

technology that promises a standardized solution to extend the existing IEEE Std 802.3 Ethernet to 

support real-time requirements and make it useful for industrial use-cases [1]. 

The development of TSN standards is not yet finished but it is safe to say that time synchronization is 

considered as an essential prerequisite for any TSN implementation. To clarify this statement, the 

following case is presented. 

 

 

Fig. 1: Example of a time-aware schedule [2] 

Fig. 1 shows an example of a time-aware schedule made on the basis of IEEE Std 802.1Qbv standard 

(one of the main elements of TSN). According to this standard, eight transmission priority gates are 

defined for each outbound port on each device in the network. These gates open and close according 

to a pre-calculated schedule for the purpose of creating periodic congestion-free time slots dedicated 

for the transmission of real-time traffic (VLAN priority 7 in this example). For this to work, the timing 
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of the schedules needs to be the same all over the network. Otherwise, bottlenecks can be formed in 

some segments leading to delays and/or blockages of critical traffic which is completely 

unacceptable in TSN. Therefore, the gate operations, and consequently time slots, need to be 

precisely synchronized on all TSN devices within a network. To accomplish that, time 

synchronization is a crucial requirement for the underlying clocks on which the gate operations are 

based [3]. 

TSN standardization community adopted IEEE Std 802.1AS as the official time synchronization 

standard. It is called generalized Precision Time Protocol (gPTP), because it is based on the Precision 

Time Protocol (PTP) defined in the IEEE Std 1588. This document will not discuss PTP, rather it will 

focus on gPTP as a standalone standard. 
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2 Clock Synchronization and Syntonization 

2.1 Synchronization Model and Devices 

gPTP time synchronization model consists of a grandmaster (GM) which has the best clock or 

connected to the best external clock and acts as the reference of time. It sends its synchronized 

timing information messages to the directly connected devices. Each of these devices receives the 

synchronized time, processes it and forwards (or regenerates) it according to some specific working 

 

devices until it reaches the destination endpoints (slaves) in which it is used to adjust their local time 

   

example of a gPTP network which typically consists of two types of devices: 

 PTP End Instance (PEI): acts as the source of timing information if it is selected to be the 

grandmaster, or the destination of timing information if it is selected to be a slave 

 PTP Relay Instance (PRI): intermediate bridging device which receives the timing 

information from the previous device, processes and updates it, then sends it to the following 

devices in the network. 

 

 

Fig. 2: Example of a gPTP synchronization network model [4] 

 

principles explained later in details. As a result, GM reference time travels through the consecutive

to be equal to the time of the grandmaster [4]. The following Figure below (Figure 2) provides an



 

Offenburg University of Applied Sciences 

Institute of reliable Embedded Systems and Communication Electronics (ivESK) 
 Page 11 of 28 

 

Fig. 2 also shows that one grandmaster device can be responsible for synchronizing many devices 

even when the media connecting them is not Ethernet. In fact, the standard defines different ways for 

synchronization information to travel from Ethernet to other media connections like Ethernet 

Passive Optical Network (EPON) and Wireless Local Area Network (WLAN) without problems [4]. 

However, since this document is mainly concerned with Ethernet TSN, only time synchronization 

over regular Ethernet is covered. 

2.2 Clock Syntonization 

Since each of the devices along the way from the grandmaster to the endpoints has a specific role in 

the synchronization process, it makes sense to assume that the concept of time on these devices 

needs to be similar to the one of the grandmaster. In other words, the duration of one second 

(consequently, the frequency of the clock) on all devices communicating the synchronized 

information should be identical. The process of coordinating the frequencies of two or more clocks is 

called clock syntonization. It can be performed in two different ways [4]: 

 Physical syntonization: the actual frequency of the local oscillator is changed. This can be 

achieved using a Phase-Locked Loop (PLL) for example. However, this method is known to be 

slow and prone to gain peaking effects. 

 Logical syntonization: the frequency of the local oscillator is not adjusted. Rather, the ratio of 

the frequency of the grandmaster clock to the frequency of the local clock is continuously 

updated and considered in the time calculations to achieve the same time perspective on all 

devices.  

Although the standard allows physical syntonization, it basically uses logical syntonization in which 

the local clock of the gPTP device is a free-running clock. Separately, the frequency ratio of the local 

clock of each device with respect to the grandmaster is maintained in a variable called gmRateRatio 

and used to calculate the accurate synchronized time which is maintained in variables called 

masterTime and clockSlaveTime. Later chapters provide more details about this statement [4]. 
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3 Establishment of Synchronization Tree 

3.1 Overview 

As mentioned earlier, timing information travels from the grandmaster to the rest of the devices in 

hierarchal manner. In a stable situation, the gPTP domain is logically structured in the form of a time-

synchronization spanning tree with only one active grandmaster acting as the root and containing 

one or more master ports. The grandmaster can be followed by multiport PRI devices each with a 

single slave port connected to the path toward the grandmaster and one or many master and passive 

ports connected to the remaining branches of the tree. These branches can also be connected to 

other multiport PRIs and/or to final PEIs at the leafs of the tree. Each leaf PEI has only one port and it 

is in the slave state. Overall, each port in the synchronization tree shall have one of the states: 

MasterPort, SlavePort, PassivePort or it can be disabled either by the management or if it is not 

capable of fulfilling gPTP standard requirements. Fig. 3 shows a diagram a gPTP synchronization 

tree, where “M” stands for MasterPort, “S” for SlavePort and “P” for Passive Port [4]. 

 

 

Fig. 3: gPTP synchronization tree [4] 

The decision on how the synchronization tree is built and the state of each port in it is taken by an 

algorithm called Best Master Clock Algorithm (BMCA) which runs locally on every device in the gPTP 
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network. The algorithm decides which port gets which state by comparing different sets of 

information describing the local and remote ports and choosing a suitable state for each of them 

based on its characteristics and location in the tree with respect to the grandmaster. Information 

about remote ports is fed to the BMCA using a special type of messages called Announce messages. 

These messages are periodically originated from the grandmaster then updated and forwarded by 

each PRI throughout the network [4]. 

3.2 Best Master Clock Algorithm 

Each of the information sets used by BMCA consists of the following elements in the same order from 

the most significant to the least significant: priority1, clockClass, clockAccuracy, offsetScaled-

LogVariance, priority2, grandmaster clockIdentity, steps-Removed, source portIdentity and 

destination portNumber. The values of these elements are either manually initialized according to 

standardized rules like priority1 and clockClass, or filled with runtime information like 

stepsRemoved which represents the number of communication paths between the local clock and 

the current grandmaster. For all the previous components, the smaller numerical value represents a 

better attribute and since they are already ordered in a form of priority vectors, comparing them is a 

straightforward process from a mathematical point of view. The following priority vectors are 

defined [4]: 

 portPriorityVector (pPV) – per port: holds the information of the port in a stable situation 

(when the reception of Announce messages and any pending update has been completed) 

 messagePriorityVector (mPV) – per port: conveyed in the received Announce messages 

o If mPV < pPV then pPV is replaced by mPV 

 gmPathPriorityVector (gmPPV) – per port: derived from pPV and holds the information of the 

grandmaster as seen from the local port 

 systemPriorityVector (sPV) – per system: holds information about the local system and used 

to build mPV in Announce messages transmitted from the system’s master ports if the system 

was selected to be the grandmaster 

 gmPriorityVector (gmPV) – per system: the best selected priority vector among the local 

information (sPV) and all received information (gmPPVs) 

 masterPriorityVector (maPV) – per port: derived from gmPV and used to build mPV in the 

Announce messages transmitted by the port if it is selected to be a master 
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o if maPV < pPV then the port is selected to be a master port 

The BMCA mechanism can be explained by the following simplified example of a synchronization 

tree establishment scenario. The example is also graphically represented in Fig. 4. 

 

 

Fig. 4: Working principle of BMCA (simplified) 

From an operational point of view, when a gPTP time-aware system is turned on, sPV is initialized 

and its value is assigned to gmPV, this means, the system initially considers itself as a grandmaster. 

Consequently, all the ports that are “AS capable” are assigned the MasterPort state. A port is 

considered “AS capable” if it runs the IEEE Std 802.1AS mechanism for calculating the propagation 
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delay from its neighboring peer port (explained later as peer-to-peer delay mechanism) and 

successfully calculates a propagation delay period below a predefined threshold [4].   

Once an Announce message arrives at any of the gPTP ports, it is qualified. This means, the message 

is only considered if [4]: 

 It is not sent by the local system 

 It is less than 255 steps away from the grandmaster 

 It is not circulating in a loop 

After the Announce message is qualified, its mPV is compared to pPV of the port and if it is better, it 

replaces it, which leads to the update of gmPPV of the port. Afterwards, gmPV is recomputed on the 

system level based on the new information received from this port and possibly similar updates on 

other ports. At this point, one of the following three possible scenarios can take place [4]: 

 If gmPV is derived from sPV, the local instance is considered to have the best master clock. 

Hence, it is selected to be the grandmaster and all its ports are assigned the MasterPort state. 

 If gmPV is derived from pPV of the considered port, this indicates that the information 

received on this port is the best among the remaining information available from the local 

system and the other local ports. As a result, this port is assigned the SlavePort state. 

 If gmPV is not derived from sPV or pPV of the considered port, this means that there is a 

better slave port in the system. Therefore, the port can either be master or passive. In order 

to decide, pPV is compared to the maPV of the port and if it is better, the port at the other end 

of the link is considered as a better master, as a result, the local port is assigned the 

PassivePort state. Otherwise, the port is given the MasterPort state because the Announce 

message it can transmit is better than the Announce message it can receive from the peer 

port. 

Finally, if no Announce messages are received until the announce receipt timeout timer expires, the 

port is directly assigned the MasterPort state [4].  
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4 Synchronization Process 

4.1 Overview 

After building the synchronization tree and defining the most suitable paths for the synchronization 

information to propagate from the grandmaster to the end stations, the process of transporting this 

information can start. This process consists of two parts running continuously in parallel: 

 Calculating the propagation delay from the neighboring peer port (peer delay mechanism) 

 Forwarding the synchronization information 

Following the approach of chapter 3, this chapter describes these two parts by giving a simplified 

example of the synchronization process. Prior to that, a brief explanation of the types of used 

messages is provided. 

4.2 Types of Synchronization Messages 

In order to transport synchronization information, gPTP standard defines two types of messages [4]: 

 Event messages: used for capturing different times and measuring delays in the network by 

calculating the time differences between their transmission and reception moments. In order 

to do this, these messages are timestamped once they leave the transmitting port (Egress 

timestamp) and once they arrive at the receiving port (Ingress timestamp). With adequate 

hardware support, these timestamps can be captured at a point very close to the physical 

layer of the port, and therefore, they can be very accurate. These messages are: Sync, 

Pdelay_Req and Pdelay_Resp. 

 General messages: their exact transmission and reception times are not important. Therefore, 

they are not timestamped. Rather, they are used to convey important synchronization 

information like timestamps of the event messages appended to them. These messages are: 

Follow_Up and Pdelay_Resp_Follow_Up. 

Note: general messages can also be used to communicate other gPTP relevant information 

like clock characteristics. Thus, the Announce messages described earlier are considered as 

general messages as well. 
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4.3 Propagation Delay Measurement 

Each non-disabled or non-blocked port in the gPTP domain needs to measure the propagation delay 

encountered by the gPTP messages arriving from its neighboring peer port. This can be done using 

the peer-to-peer delay mechanism [4]. 

Fig. 5 describes the process of peer-to-peer delay mechanism where the initiator port starts by 

issuing a Pdelay_Req message and generating its egress timestamp t1. The responder port receives 

the message and generates the ingress timestamp t2. Directly afterwards, the responder sends a 

Pdelay_Resp message, which carries t2, and generates timestamp t3. Later on, once this message is 

received by the initiator, timestamp t4 is generated and the initiator waits for the 

Pdelay_Resp_Follow_Up message which finally arrives from the responder carrying t3 [4]. 

 

 

Fig. 5: Peer-to-peer delay mechanism [4] 

At this point, the initiator becomes aware of all the captured timestamps, so it uses them to calculate 

the mean propagation peer delay (𝐷) based on Eq. 1 [4]. 

𝐷 =  
𝑟 . (𝑡4 −  𝑡1) − (𝑡3 −  𝑡2)

2
 Eq. 1 

Where 𝑟 represents the neighborRateRatio which is the ratio of the frequency of the clock used by 

the responder to the frequency of the clock used by the initiator. It is estimated by observing 

successive values of t3 and t4 taken from successive Pdelay_Resp and Pdelay_Resp_Follow_Up 

messages. The fact that the initiator multiplies 𝑟 by the timestamps captured on its side (t1 and t4) 
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indicates that 𝐷 is actually calculated relative to the time base of the responder, or in other words, to 

the clock of the peer port [4]. 

By looking at Eq. 1, the reader can easily see that 𝐷 represents a mean value because it assumes that 

delay is the same in both directions of propagation. However, in reality, this might not be the case all 

the time. If the propagation link is asymmetric the value of 𝐷 will include an amount of error. In 

order to deal with such a situation, the standard introduces an optional delayAsymmetry factor that 

can be considered to improve the precision of 𝐷. Although it is left to the implementation to decide 

how to obtain delayAsymmetry, the 2020 version of the standard explicitly mentions that it cannot 

be calculated during the live operation of the system. Therefore, gPTP operations are held if 

delayAsymmetry measurement process is taking place (i.e. asymmetry measurement mode is 

enabled). Furthermore, the standard advises to measure delayAsymmetry before running the system 

or to obtain it separately from the supplier [4]. 

Another factor to be considered here, that is not shown in Eq. 1, is the time measurement granularity 

which completely depends on the used clock and can be in the range of 40 ns. This effect can occur 

while calculating any of the four timestamps and every time it occurs it causes 20 ns change in the 

calculated value of 𝐷. In order to reduce this effect and improve accuracy, the standard proposes to 

apply an averaging filter on the measured successive values of 𝐷 [4].  

4.4 Transport of Synchronization Information 

The source of time is usually an external entity like Global Positioning System (GPS) connected to the 

grandmaster via an application interface. The slaves on the other hand can be connected to external 

applications that use the synchronized time via an application interface as well. The standard does 

not discuss the external entities (clock source and slave applications) but it provides some examples 

for the application interfaces connecting them to allow better modelling and clearer abstraction for 

the gPTP process itself [4].  

Fig. 6 shows a simplified example of a gPTP time synchronization scenario where the tree built using 

BMCA consists of one grandmaster PEI and one slave PEI communicating through one PRI in the 

middle. At the beginning, the synchronization process is initiated on the grandmaster PEI which 

continuously updates its local time (masterTime) to the reference time obtained from the external 

source. Another important variable also maintained here is the gmRateRatio which –at this point– 

represents the frequency ratio of the external clock source to the local clock of the grandmaster PEI. 
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Fig. 6: Transport of synchronization information 

The grandmaster PEI periodically generates synchronization information and forwards them to the 

PRI in the form of Sync and possibly Follow_Up messages (see 5.10). The purpose of the Sync 

message is to capture highly accurate ts1 and tr1 timestamps, while the Follow_Up message is used to 

carry the following information: 

 preciseOriginTimestamp: the accurate masterTime at which the Sync message is internally 

originated 

 correctionField: contains the fractional nanoseconds value of the preciseOriginTimestamp, in 

addition to the period of time the Sync message spent within the grandmaster PEI until it was 

transmitted at ts1 (appears in the figure as p1). This period is multiplied by gmRateRatio to 

represent it relative to the clock of grandmaster’s external source (see 2.2). 

 cummulativeScaledRateOffset: a scaled value of the gmRateRatio 

 Information about the last phase and frequency changes of the external clock source 



 

Offenburg University of Applied Sciences 

Institute of reliable Embedded Systems and Communication Electronics (ivESK) 
 Page 20 of 28 

 

Upon the reception of the Sync/Follow_Up pair and capturing tr1, PRI calculates the upstreamTxTime 

which represents the timestamp ts1 relative to the local clock of PRI using Eq. 2 [4]. 

𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑇𝑥𝑇𝑖𝑚𝑒 =  𝑡𝑟1 −
𝐷

𝑟
  {−

𝑑𝑒𝑙𝑎𝑦𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

𝑔𝑚𝑅𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜
} Eq. 2 

Where 𝐷 and 𝑟 are obtained from Eq. 1, and the part within the curly brackets only applies when the 

peer-to-peer delay is calculated based on the instance-specific method rather than CMLDS (see 5.4). 

gmRateRatio here is obtained from the cummulativeScaledRateOffset of the received Follow_Up 

message.  

Note: Since the mean propagation peer delay is actually calculated relative to the time base of the 

neighbor, dividing it by 𝑟 here converts it to the time base of the current local clock. In the same way, 

the value of delayAsymmetry is also converted from time base of the grandmaster to the time base of 

the current local clock by dividing it by gmRateRatio [4].  

The PRI then updates the value of gmRateRatio by accumulating the neighborRateRatio (𝑟) to it. As a 

result, it becomes equal to the frequency ratio of the grandmaster clock to the local clock of the PRI. 

Afterwards, the following two tasks are performed in parallel: 

 Task1: updating and forwarding the Sync/Follow_Up pair via the master ports 

 Task2: using the received information for internal synchronization 

In task1, the PRI updates the following fields of the Follow_Up message, then forwards it [4]: 

 correctionField: contains the sum of the received correctionField and the time period the 

Sync message spent between ts1 and ts2 (appears in the figure as p2 and p3) expressed relative 

to the grandmaster clock (see 2.2). The mathematical formula for calculating the new 

correctionField is shown in Eq. 3. 

𝑛𝑒𝑤 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑 =  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑 + 

                                                𝑔𝑚𝑅𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜 ∗ (𝑡𝑠2 − 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑇𝑥𝑇𝑖𝑚𝑒) 
Eq. 3 

 cummulativeScaledRateOffset: recalculated based on the new gmRateRatio  

In task2, the PRI uses the received preciseOriginTimestamp and correctionField along with the new 

gmRateRatio to calculate the reception time of the Sync message relative to the grandmaster clock 

(Eq. 4) and relative to its own local clock (Eq. 5). 
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𝑠𝑦𝑛𝑐𝑅𝑒𝑐𝑒𝑖𝑝𝑡𝑇𝑖𝑚𝑒 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑒𝑂𝑟𝑖𝑔𝑖𝑛𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑖𝑒𝑙𝑑 

                                + 𝐷 ∗  
𝑔𝑚𝑅𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜

𝑟
+ 𝑑𝑒𝑙𝑎𝑦𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 

Eq. 4 

𝑠𝑦𝑛𝑐𝑅𝑒𝑐𝑒𝑖𝑝𝑡𝐿𝑜𝑐𝑎𝑙𝑇𝑖𝑚𝑒 =  𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑇𝑥𝑇𝑖𝑚𝑒 + 
𝐷

𝑟
 

                                                    +  
𝑑𝑒𝑙𝑎𝑦𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

𝑔𝑚𝑅𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜
 

Eq. 5 

Based on these two variables, the PRI can calculate the offset of its local clock from the clock of the 

grandmaster and update its synchronized time maintained in a variable called clockSlaveTime. The 

update mechanism of this variable is not strictly defined in the standard. However, a valid example is 

to set it to SyncReceiptTime whenever this value changes and increment it at every local clock tick by 

the interval of the local clock multiplied by gmRateRatio (see 2.2) [4]. 

Eventually, the slave PEI receives the forwarded Sync/Follow_Up pair from the PRI and rather than 

forwarding these messages any further, it preforms the same synchronization procedures performed 

by the PRI in task2 where the ClockSlaveTime is continuously updated to follow the grandmaster 

clock [4]. 

4.5 Signaling Messages 

Signaling messages are general messages used to carry information, requests and/or commands 

using the Time-Length-Value (TLV) structure. The message interval request TLV is an example of 

these messages. It is used by a port to request its peer port to change the desired transmission 

interval for sending synchronization information, propagation delay measurements or Announce 

messages. This message is also used to indicate whether the peer port should compute 

neighborRateRatio and mean propagation delay, or whether the local port can handle one-step Sync 

messages (see 5.10) [4]. 
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5 New Concepts Introduced in 2020 

5.1 External Port Configuration 

The standard allows an external entity to determine the grandmaster and build the synchronization 

tree instead of using BMCA. The algorithm used by the external entity is not defined in the standard. 

However, the same Announce messages used by BMCA are utilized by the external entity to transport 

synchronization tree information and grandmaster time properties from one PTP instance to the 

other [4]. 

5.2 Signaling gPTP Capability 

The standard defines the signaling gPTP-capable TLV which is continuously transmitted from each 

port as an indicator that it is capable of running gPTP [4]. 

5.3 Multi-Domain Support 

The standard defines the outlines for running multiple gPTP instances on multiple domains. The use-

cases behind this feature are mainly industrial where some applications can have special 

requirement like multiple timescales and/or extra redundancy features [4]. Fig. 7 is an updated 

version of Fig. 3 where two gPTP domains are configured in the network. 

According to the figure, the physical network is divided into two logical networks that overlap in 

some devices and links. Some ports can be masters in one domain and slaves in the other. Based on 

this assumption, a separate independent instance of BMCA must be invoked in each domain, so each 

domain must have its own grandmaster device and must build its own synchronization tree. 

Additionally, synchronization information travels through different paths in different domains. This 

indicates that the mechanism used to transport synchronization information is per domain. 

In Fig. 7, the same grandmaster is selected by both domains and the redundancy is on the path level, 

while Fig. 8 shows an example of a multi-domain gPTP network with two grandmasters. It is clearly 

seen from this figure that the red (standby) grandmaster is at the same time a slave to the blue 

(primary) grandmaster. This scenario gives the advantage of having a hot standby solution where, if 

the primary grandmaster failed, the standby grandmaster can take over the synchronization process 

immediately without having to wait for the BMCA in the primary tree to exchange the updated 

Announce messages and elect a new primary grandmaster [4]. 
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Fig. 7: Multi-domain gPTP synchronization tree [4] 

 

 

Fig. 8: Multi-domain gPTP synchronization tree with two GMs [4] 
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Note: some gPTP ports can be disabled on one domain and enabled on another. 

Note: every gPTP system shall have support for domain 0 to maintain a backward compatibility with 

the 2011 version of the standard which allows only one domain (domain 0) to be running. 

Nevertheless, this domain does not have to be the active one in a multi-domain scenario [4]. 

5.4 Common Mean Link Delay Service (CMLDS) 

The introduction of multi-domain approach requires special support for the peer-to-peer delay 

mechanism. Since the mean delay on a PTP link is the same in all domains, there is no need to invoke 

this mechanism for each domain. A single instance of it is enough to do the required measurements 

and make them available for all active domains. The way to do this is through the CMLDS support 

which is defined in 2020 version of the standard in addition to the instance-specific peer-to-peer 

delay mechanism of 2011 version (to maintain backward compatibility). Although both methods 

follow the same approach described in 4.3, there are some structural differences between them. For 

example, in CMLDS the delayAsymmetry is considered within the correctionField of the 

Pdelay_Resp_Follow_Up message used to correct t3 in Eq. 1, so it is modelled in the equation, while 

this is not the case with instance-specific peer-to-peer delay where delayAsymmetry is not stored in 

any correctionField. Hence, it needs to be considered separately when upstreamTxTime is calculated 

later (see Eq. 2). Furthermore, when neighborRateRatio is calculated using CMLDS, its value needs to 

be corrected for delayAsymmetry (for the same reason), while this correction is not required when 

instance-specific peer-to-peer delay is used [4]. 

5.5 asCapableAcrossDomains 

The capability of the port to operate the IEEE 802.1AS protocol is modeled in both versions of the 

standard as asCapable. This variable is set to true if the port is able to measure a peak-to-peak 

synchronization jitter within 1 microsecond from a port that is separated by six or fewer PRIs. 

Additionally, 2011 standard defined the following conditions [5]: 

 Port is able to perform peer delay mechanism 

 Port measures a peer delay below a pre-defined threshold (800 ns) 

 Port does not receive multiple responses to a single request 

 Port does not receive a response from the itself or from other ports of the same device 
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In 2020 version, with the introduction of multi-domain concept, the fulfillment of the previous 

conditions in one domain sets asCapableAcrossDomains to true (because the links connecting peer 

ports are identical in all domains), while asCapable of a port is set to true when [4]: 

 asCapableAcrossDomains is set to true 

 gPTP-capable TLV is received from the peer port, indicating that it is able to operate the IEEE 

802.1AS protocol 

5.6 gPTP Domain Identification 

A domain is identified by two attributes: domain number and sdoId. Domain number can be any 

value in the range 0 through 127, while sdoId of a domain is a 12-bit structure that consists of [4]: 

 majorSdoId (4 bits): set to 0x1 for the gPTP domain and instance-specific peer-to-peer delay 

mechanism, and set to 0x2 for the CMLDS 

 minorSdoId (8 bits): always set to 0x0 

majorSdoId was named transportSpecific field of 2011 standard messages while minorSdoId did not 

exist. Domain number was always set to 0 because only one gPTP domain was allowed [5]. 

5.7 Announce Slow Down 

Although the old version of gPTP also introduced the message interval request TLV to allow a port to 

request a change in the rate at which Announce messages are transmitted from its peer master port 

(announce interval), it did not specify how the ports handle the switch-over from one interval to 

another [5]. However, this mechanism is strictly defined in the new version of the standard. 

According to the new definition, the transmitting port informs the receiving port about the expected 

new rate while it continues to send Announce messages at the same old rate for a period of time 

equivalent to the old announce receipt timeout. This ensures a smooth timeout-free transition from a 

high rate to a slower one [4]. 

5.8 Sync Slow Down 

This process is completely identical to the announce slow down process (see 5.7) where the message 

interval request TLV is used to change the rate at which Sync messages are transmitted from master 

port (sync interval). Again, the new aspect here is the way of handling the switch-over from one 

interval to another. According to the new definition, the transmitting port informs the receiving port 

about the expected new rate while it continues to send Sync messages at the same old rate for a 
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period of time equivalent to the old sync receipt timeout. This ensures a smooth timeout-free 

transition from a high rate to a slower one [4]. 

5.9 SyncLocked Feature 

As mentioned earlier, the PRI receives the Sync/Follow_Up messages through its slave port and 

forwards them through its master ports. The new SyncLocked variable decides when these messages 

shall be forwarded. If SyncLocked is TRUE, the PRI forwards the messages as soon as possible after 

receiving them, while if SyncLocked is FALSE, each master port in the PRI forwards the messages 

based on its own sync interval which is completely independent from the time of reception [4]. In the 

old version of the standard, the master port of the PRI forwards the messages as soon as possible 

after receiving them, provided that they do not arrive sooner than a period of time equals to half of 

its sync interval. Otherwise, the messages are not forwarded [5]. 

Note: readers with background knowledge in IEEE Std 1588 can identify that the case where 

SyncLocked is TRUE reflects the behavior of a PTP transparent clock, while a FALSE SyncLocked 

reflects the behavior of a PTP boundary clock.  

5.10 One-Step Processing 

Both versions of the standard define the two-step processing method on which an event message is 

followed by a follow_up message that carries its Tx timestamp and other useful information 

(Follow_Up and Pdelay_Resp_Follow_Up messages). However, the 2020 version allows the optional 

usage of one-step processing for Sync message. This means, Tx timestamp of a Sync message can be 

embedded “on the fly” in the message itself instead of using a Follow_Up message to deliver it to the 

receiver. This option nevertheless is not available for peer-to-peer delay mechanism [4]. 
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6 Conclusion 

This document is intended to cover the main aspects of IEEE Std 802.1AS and to provide the reader 

with a simplified entry point into the official time synchronization standards as a part of the ongoing 

efforts to implement different solutions for TSN networks. It is noteworthy to mention that at the 

time of writing this document, different implementations of PTP have been already available in the 

market. Some of these implementations introduce additional settings to activate the gPTP profile 

(like “linuxptp-3.0” [6]), but a complete gPTP solution where the PRI functionality and multi-domain 

features are supported is still missing.  
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